This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Rendering: Portal occlusion culling. Revamped collision layer grid in the inspector. Portal occlusion culling. Up till now a significant missing feature in the renderer has been the ability to cull (prevent rendering) objects that are within the camera view, but occluded by another object (for instance a wall).
Write a more efficient Mesh format, which allows faster loading/saving. Implement Particle Shaders, with support for: Sorting, Collision and Soft Particles. Improve Culling: Portals (rewrite as polygon-based) and Rooms. It manages resource storage such as textures, meshes, skeletons, etc. Add Layered/Stencil rendering.
A long-standing Bullet regression has finally been fixed ( GH-56801 ), solving issues with KinematicBody collisions on edges (e.g. The new NavigationServer adds support for obstacle avoidance using the RVO2 library, and navigation meshes can now be baked at runtime. Anything behind the polygon will be culled from view.
The new NavigationServer adds support for obstacle avoidance using the RVO2 library, and navigation meshes can now be baked at runtime. Following on from the addition of OccluderShapeSphere in 3.4 , lawnjelly now brings us a more adaptable and easy way to add basic occlusion culling in the form of the OccluderShapePolygon.
The new NavigationServer adds support for obstacle avoidance using the RVO2 library, and navigation meshes can now be baked at runtime. Following on from the addition of OccluderShapeSphere in 3.4 , lawnjelly now brings us a more adaptable and easy way to add basic occlusion culling in the form of the OccluderShapePolygon.
The new NavigationServer adds support for obstacle avoidance using the RVO2 library, and navigation meshes can now be baked at runtime. Following on from the addition of OccluderShapeSphere in 3.4 , lawnjelly now brings us a more adaptable and easy way to add basic occlusion culling in the form of the OccluderShapePolygon.
The new NavigationServer adds support for obstacle avoidance using the RVO2 library, and navigation meshes can now be baked at runtime. Following on from the addition of OccluderShapeSphere in 3.4 , lawnjelly now brings us a more adaptable and easy way to add basic occlusion culling in the form of the OccluderShapePolygon.
The new NavigationServer adds support for obstacle avoidance using the RVO2 library, and navigation meshes can now be baked at runtime. Following on from the addition of OccluderShapeSphere in 3.4 , lawnjelly now brings us a more adaptable and easy way to add basic occlusion culling in the form of the OccluderShapePolygon.
The new NavigationServer adds support for obstacle avoidance using the RVO2 library, and navigation meshes can now be baked at runtime. Following on from the addition of OccluderShapeSphere in 3.4 , lawnjelly now brings us a more adaptable and easy way to add basic occlusion culling in the form of the OccluderShapePolygon.
Multiple fixes to one-way collisions. Physics: Fix multiple issues with one-way collisions ( GH-42574 ). Physics: Allow CollisionObject to show collision shape meshes ( GH-45783 ). Rendering: Various fixes to light culling ( GH-46694 ). In either case, be sure to report the problem on GitHub.
Multiple fixes to one-way collisions. Physics: Fix multiple issues with one-way collisions ( GH-42574 ). Physics: Allow CollisionObject to show collision shape meshes ( GH-45783 ). Rendering: Various fixes to light culling ( GH-46694 ). In either case, be sure to report the problem on GitHub.
Multiple fixes to one-way collisions. Physics: Fix multiple issues with one-way collisions ( GH-42574 ). Physics: Allow CollisionObject to show collision shape meshes ( GH-45783 ). Rendering: Various fixes to light culling ( GH-46694 ). In either case, be sure to report the problem on GitHub.
Those now come with support for attractors, collision , trails , sub-emitters and manual emission. Several new optimization techniques are also at your disposal, such as occlusion culling , automatic mesh LOD , and manual HLOD using visibility ranges , made possible by Joan Fons ( JFonS ), and Juan. has been added by Je06jm.
Still, this workflow is easy and efficient as 3D objects get a second set of UVs generated on import, and baking works with instantiated meshes, scenes and even GridMaps. It is possible to either import a scene as a single file, or to split it into multiple instantiated subscenes, keep materials, meshes and animations external, etc.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content